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ABSTRACT 

The chromatographic transport problem in the displacement separation of multi-component mixtures leads to a set of coupled, 
non-linear partial differential equations. Neglecting axial dispersion, the set of equations can be solved using a transformation of 
variables (h or w transformation) for the case that the multi-component distribution function is considered to be ideal (Langmuirean). If 
intermolecular interactions (non-idealities) are taken into account in the description of the multi-component distribution equilibrium, 
such a transformation of variables is no longer possible. The displacement separation of binary mixtures was analysed by applying 
shock-wave theory to the problem of non-ideal distribution isotherms. A description of the separation as a function of time and distance 
was obtained (development graph). Experimental results pertaining to the separation of Na-K mixtures using Li as the carrier and Rb 
as the displacer are presented. Quantitative agreement with predicted development graphs was obtained if non-idealities were taken into 
account, whereas the use of multi-component Langmuir isotherms yielded agreement with experimental results over only a limited 
composition range. 

INTRODUCTION 

The merits of the displacement mode of chroma- 
tography were already recognized by the pioneers of 
separation science [1,2]. The ability to concentrate 
sample components in the course of a separation is a 
particularly important asset of the technique. Owing 
to both theoretical and technical problems, the 
advantages of the displacement mode were over- 
shadowed by the success of linear elution chromato- 
graphy. It was not until the early 1980s that 
displacement chromatography was revived from its 
quiescent state, when Horvath and co-workers [3- 
5] demonstrated that by using modern high-perfor- 
mance liquid chromatographic (HPLC) equipment, 
the advantages of the displacement mode could be 
successfully exploited. 

During the separation, the feed components com- 
pete for the sites on the stationary phase; on 
completion of the separation they are arranged in 
adjacent pure zones that travel at equal velocities 
(isotachic state). As the separation is based on 
mutual interferences among feed components, dis- 
placement chromatography is a non-linear tech- 
nique. This causes the proper selection of the 
operating parameters required for attaining the 
isotachic state (e.g., flow-rate, column length, tem- 
perature, concentration and nature of carrier and 
displacer) to be a complex problem. 

In displacement chromatography, the column is 
first equilibrated with an eluent weaker than any of 
the feed components (the carrier); the feed mixture is 
then introduced followed by an eluent stronger than 
any of the constituents of the feed (the displacer). 

A large number of different approaches have been 
proposed to model non-linear separations. Depend- 
ing on their specific area of interest, different 
workers have proposed different solutions to the 
two major problems in non-linear separations: (1) 
how to incorporate the effect of finite rates (axial 
dispersion) and (2) how to model the multi-com- 
ponent distribution between stationary and mobile 
phase. 

Early interest in non-linear chromatography de- 
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rived from regenerative operations in fixed beds. 
Here, mainly the first problem is tackled. Thomas [6] 
introduced a lumped rate constant to account for 
slow kinetics. An important extension to the original 
Thomas approach allowing for other rate-control- 
ling steps (e.g., intra- and extra-particle diffusion) 
was published by Hiester and Vermeulen [7]. Also, 
workers studying overloaded elution chromatogra- 
phy used mass-balance equations containing dis- 
persion terms to predict elution profiles. Haarhof 
and Van de Linde [8] treated non-linearity as a 
perturbation to the linear solution. Guiochon and 
co-workers [9,10] used the numerical error intro- 
duced by their finite difference scheme to estimate 
axial dispersion. An exact solution has been derived 
for a single component following Langmuir-type 
kinetics, assuming that axial diffusion can be ne- 
glected [ 1 I]. Owing to the mathematical complexity, 
the above methods are in many instances limited to a 
single solute. Thus, multi-component effects, im- 
portant for practical cases, are not treated by these 
methods. An interesting exception is the work of 
Phillips et al. [12]. Here, the displacement separation 
of multi-component mixtures was calculated using a 
model that incorporates finite mass transfer rates as 
well as axial diffusion. A numerical technique was 
employed to approximate the resulting system of 
coupled non-linear differential equations. 

Alternatively, one can assume the column effi- 
ciency to be infinite. Hence, equilibrium is assumed 
and all axial dispersion is neglected. This approxi- 
mation is generally called ideal chromatography. 
Although not infinite, the efficiency of present-day 
HPLC columns is high enough to allow a good 
comparison between predicted and experimental 
results [13,14]. Analytical solutions to the multi- 
component ideal case were obtained by Helfferich 
and Klein [15] and Rhee and co-workers [ 16,171 
using a very elegant transformation of variables: h- 
[15] or w-transformation [ 161. Golshan-Shirazi and 
Guiochon [ 181 presented a solution to the separation 
of binary mixtures in the overloaded elution mode 
using shock theory. 

The use of the ideal chromatography assumption 
greatly facilitates the study of non-linear multi- 
component problems. It is sufficiently accurate to 
concentrate on the second major problem: how to 
model the multi-component distribution between 
mobile and stationary phases. In the literature. the 

multi-component Langmuir isotherm is used almost 
exclusively to describe this distribution. The great 
preference for this particular isotherm can be easily 
traced to its simple functional form (constant sepa- 
ration factors) and to the fact that solutions for 
non-linear separations of N-component mixtures 
can be obtained in the Langmuir case by the h- or 
w-transformation. If separation factors are a func- 
tion of composition, this is in general not possible. 
The physical basis for the use of the Langmuir 
isotherm, however, is weak. The different saturation 
coverages used for different components have been 
shown to be inconsistent with basic thermodynamics 
[19] and the assumed ideality (neglect of interparticle 
interactions) deserves further investigation. In a 
number of instances, discrepancies between experi- 
mental and predicted results in the modelling of 
non-linear separations have been attributed to the 
shortcomings of the Langmuir equation [13,20]. 

The aim of this work was to compare two models 
that describe the distribution equilibrium between 
stationary and mobile phases: the multi-component 
Langmuir isotherm on the one hand and a multi- 
component isotherm that accounts for two-body 
interactions in the stationary phase on the other. As 
we have recently shown, an isotherm that accounts 
for two-body interactions in the stationary phase 
can be derived from first principles for systems that 
belong to the same compensation class [21--231, a 
compensation class being defined as a group of 
similar compounds characterized by a common 
compensation temperature (Tc = AH/AS, where 
the enthalpy and entropy changes refer to a phase 
equilibrium). The non-linear system we consider is 
the displacement separation of binary mixtures. The 
modelling consists of solving the hyperbolic system 
of conservation laws of the ideal chromatographic 
approximation using shock theory. The solutions 
are presented in the form of development graphs, 
i.e., plots of time vs. distance showing the history of 
the separation. 

More specifically, the system we use to compare 
the different multi-component isotherms is the dis- 
placement separation of K-Na mixtures on an 
ion-exchange column, using Li as the carrier and Rb 
as the displacer. We shall show that by using a 
multi-component isotherm that incorporates non- 
idealities, a good prediction of the displacement 
separation is obtained for all compositions of the 
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IS-Na feed. The use of ideal (Langmuir) isotherms in 
the modelling is shown to yield an adequate descrip- 
tion of the separation over only a limited range of 
composition of the binary feed. 

THEORY 

General description of the problem for non-ideal 
isotherms 

Let us consider a system consisting of m com- 
ponents. The molar concentrations of the ith com- 
ponent in the mobile and stationary phase are 
denoted by ci and ni, respectively. Let z be the 
distance along the column measured from the inlet 
and let t denote time with t = 0 corresponding to the 
entry of the sample into the column. The variables z 
and t are made dimensionless by the length L of the 
column and by L/U, where U is the constant 
interstitial velocity of the eluent. Neglecting axial 
dispersion, the conservation law for the ith compone 
nt is 

~+%+y.~=o 
where 

v=(l -&)/& (2) 

E being the void fraction. To relate stationary phase 
concentrations to mobile phase concentrations, we 
introduce the separation factors Q. To allow for 
intermolecular interactions in the stationary phase, 
these separation factors are no longer considered to 
be constants (the usual assumption), but are a 
function of all the stationary phase concentrations 
nt, n2, . . . . n,. It is, of course, here that non-ideality 
enters into the problem. The separation factors are 
thus defined by 

ni 
-= &j(nl,..., n,)% i,j=l m 2 a--, 
G cj 

(3) 

Consistency demands that 

Uij = l/Uji for all i, j 

and 

(4) 

Ctijajl = clil for all i, j, 1 (5) 

We have a total of m conservation laws (1) relating 
the 2m concentrations in the stationary and mobile 

phases: ci and ni. One would like to eliminate m of 
the unknowns by using eqns. 3,4 and 5, and in view 
of the general dependence of clii on the nj, it is natural 
to try to express the Ci in terms of the nj. However, as 
we choose to describe the distribution equilibrium 
using the separation factors that are ratios, there are 
not enough independent eqns. 3, 4 and 5 to do so. 
This implies that the set of eqns. l-5 by itself is not 
sufficient to determine the development of a separa- 
tion from its initial conditions. Additional knowl- 
edge of the distribution equilibrium needs to be 
specified for a deterministic description. 

TO clarify this point, let C(z, t) s f ci(z, t) and 
i=l 

N(z, t) s 5 ni(z, t) be the total concentrations 
i=l 

in the mobile and stationary phases, respectively. 
From eqn. 3, one obtains 

C = 2 Cj= f Ctij(nl,...,nmt'Ci 
j=l j=l I 

and hence 

(6) 

Ci=C’ 
ni 

j$l%j(n~9...,n,)nj 

i=l , **-, m (7) 

Thus, a knowledge of the total mobile phase concen- 
tration is required in order to express the ci in the nj. 
By adding eqns. 1, it follows that C satisfies 

( > i+; c+v.$o 
By substituting eqn. 7 in eqn. 1, we obtain 

i=l m I-.*, (9) 

Thus, the system of eqns. 8 and 9 can be solved if the 
total concentration in the stationary phase N is 
known as a function of (z, t) or, more generally, if N 
is given in terms of all the stationary phase concen- 
trations N(n 1, . . . , n,), because the system of equa- 
tions then consists of m + 1 equations for the m + 1 
unknowns: nl, . . . , n, and C. 



12 

Non-ideal distribution isotherms with constant total 
stationary phase concentrations 

In this section we derive a specialized form of eqn. 
8 for the case that N(z, t) is constant. This situa- 
tion applies to our experimental system: the ion- 
exchange separation of homovalent ions. Here, 
electroneutrality requires that the exchanger is al- 
ways occupied by the same number of ions. Substi- 
tuting N(z, t) 5 N constant into eqn. 8 shows that C 
is constant along curves: t - z = constant. Hence: 

C(t, Z) = C(r), z=t-z (10) 

for some function C. Since the linear velocity is unity 
with respect to the frame (z, t), eqn. 10 implies that a 
sudden change in the total mobile phase concentra- 
tion moves with the linear velocity of the eluent. 
Hence, the total mobile-phase concentration can be 
determined from the conditions at the inlet z = 0. 
By substitution of this function in eqn. 9, a coupled 
non-linear system of m equations for the m station- 
ary phase concentrations yli results. 

It will be advantageous to use dimensionless 
concentrations Xi, _vi defined by 

Xj 55 Ci/C, yi _ ni/N (11) 

Further, it will be helpful to use the independent 
variables (7, [) that are related to (t, z) by 

T=t-z 

(12) 
(=z 

Then, for fixed [, d/Jr = d/at and for fixed r, aJa[ = 
d/at + a/dz. Hence, we obtain from eqn. 9 

a WI a 
z’_Vi + -‘- 

i 

Yi 

vN ag j$l Qjbl> . . .2 Y*>Yj 
I = 0 

i= l,...,m (13) 

where we used the identity 

$e(,,= g+; c=o 

which follows from eqn. if N is 
as functions 

of the 
By the of the we have 
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of the be eliminated 
We shall 4 and 5, we 

find i l....,m - 1 

Yi _ Yi 

j$l %jYj Gn + T$: (Orij - %nlYj = 

Gni.!Ji 
= 

m-1 (15) - 
1 + 1 (&nj- I)Yj 

j=l 

The a,j are now considered as a function ofj, where 
y’ is the column vector of all independent stationary 
phase concentrations in the system. Substituting 
eqn. 15 into eqn. 13, we finally obtain the following 
coupled system of m - 1 non-linear partial differ- 
ential equations for the IPZ - I unknowns ,rI,. . : 

Ym-1 

a 21~4 a 
K”i+p’- vN ay m-1 

j-1 

i= l,...,m - 1 (16) 

The concentrations at the inlet of the column [ = 0 
are known at every time t. Hence 

3(& i = 0) (17) 

is given. 
Some remarks seem appropriate. First, one can, in 

principle, derive a system of coupled non-linear 
partial differential equations which is completely 
analogous to eqn. 16, but which instead of yi and aij 
involves Xi and aij. However, if the separation 
factors are not constants, they will in general be 
specified as functions of the stationary-phase con- 
centrations yi, rather than in terms of the mobile 
phase concentrations Xi. Therefore, the system of 
eqns. 16 for yi and Eij is in general more useful than 
the analogous system for Xi and Xij. In the case of 
Langmuir isotherms, the separation factors are 
constants and both systems are equally useful, 
although most workers use the system involving the 
mobile phase concentrations. 

Second, we note that if C(r) is constant, i.e., if the 
total mobile phase concentration at the inlet is 
constant, the system has the form 

fyi=1 
i=l 

aYi a 
,;+T$ZFi(J’)=O i= 1 ,...,m - 1 (18) 
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where the Fi are given by 

1 + C [%j<F> - llYj 
j=l 

(19) 

Eqn. 18 is called a hyperbolic system if the 
(m - 1) x (WI - 1) matrix A(y) = (Aij(jJ)) given by 
Ai, = aFi/ayj(?), has m - 1 real eigenvalues 
&(y’), .**, A,,- 1(y) for every state y’. Whether eqn. 
18 actually is a hyperbolic system depends on the 
separation factors cCij(jJ), but in the case of constant 
separation factors (Langmuir) and for the non-ideal 
distribution isotherm studied in this paper, this is 
generally so. If the total mobile phase concentration 
at the inlet is a function of time, the functions Fi 
depend explicitly on r through the factor C(r). Then, 
the system of eqns. 18 is not hyperbolic. In the 
experiments considered in this paper the total con- 
centration C(z) is, although not constant, piecewise 
constant, and the theory of hyperbolic systems can 
still be used. 

Solution method for binary mixtures 
We consider a binary mixture of K and Na with Li 

as the carrier and Rb as the displacer. The total 
stationary phase concentration is constant and the 
number of components is m = 4. The numbering of 
the components will be in sequence of decreasing 
affinity for the stationary phase. Thus, y,, yz, y3, y4 
correspond to Rb, K, Na and Li, respectively. The 
numbering convention implies that 

clij< 1 for i>j (20) 

We consider the conservation laws 13 for two 
different isotherms, namely the ideal Langmuir 
isotherms for which the Crij are independent of the 
concentrations and the non-ideal isotherms derived 
in refs. 21-23 that depend on all yi according to 

%01,Y2,Y3,Y4)=eXp -(I ,,““’ i tik-hklyk] 
k=l 

(21) 

In eqn. 21, Tis the absolute temperature and R is the 
gas constant. T, is the so-called compensation 
temperature of the class of compounds under con- 
sideration and the fij are dimensionless parameters 
describing the two-body interaction between com- 

ponents i and j in the stationary phase. It is 
important to note that thef$ are structural param- 
eters and do not depend on the composition of the 
mixture or on the temperature. This is in contrast to 
the Langmuir case, where it is assumed that multi- 
component isotherms can be constructed using data 
obtained from measurements of single-component 
isotherms; an assumption that has been shown to be 
untenable [19,24]. It is shown in the cited references 
that the above distribution isotherm resembles the 
Fowler-Guggenheim approach [25] to multi-com- 
ponent adsorption, except that in our case the 
interaction energies are temperature dependent. 

For t < 0 the column contains only the carrier 
(y4 = 1). Then, for 0 < t < t,, the mixture enters 
the column and for t > t, there is only the displacer 
(yi = 1). Hence, we have the following boundary 
condition at the inlet, x = 1 = 0. for the state vector _ , 
3 = c_YI, Yz, Y3, Y4y: 

jJ(z, 0) = (0, 0, 0,l)' z 3’ (initial state) 

j(z, 0) = (0, y;, y& O)T = y’” (feed state) 

y(z,O) = (l,O,O,O)r =y”(endstate) 

where the superscript T (transpose) is 
indicate that column vectors are implied. 

(22) 

used to 

Let the total mobile phase concentration corre- 
sponding to the initial, feed and end state be given by 
Cr,CF and CE, respectively. It follows from eqn. 10 
that there are three regions in the (z, t) plane in which 
the total mobile-phase’concentration is equal to one 
of these values (see Fig. 1): 

C(t, z) = C’ for t < 2 

C(t,z)=CFforz<t<z+t, (23) 

C(t,z)=Pfort>z+t, 

The conservation laws 13 thus differ in these three 
regions of the (z, t) plane. We note that although the 
governing eqn. 13 has r as an independent variable, 
we shall use time t in the final results and in the plot 
by using the transformation of eqn. 12. 

It is physically obvious, and it can also be verified 
explicitly, that concentration velocities are smaller 
than the linear velocity of the eluent, which is equal 
to 1 with respect to the dimensionless z and t that we 
use. Hence, below the line t = z only the carrier is 
present. 

The boundary condition 22 consists of three 
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t 

c = CE 

Z- 

Fig. 1. Schematic diagram of the solution of eqn. 8 in the (t, Z) 
plane showing zones of different total concentration. 

constant states separated by discontinuities at t = 0 
and t = t,. A system of conservation laws with as 
boundary (or initial) condition two constant states 
separated by a discontinuity is known as a Riemann 
problem. Hence, for not too large values of z, the 
solution of our problem can be obtained by sepa- 
rately solving two Riemann problems correspond- 
ing to the aforementioned discontinuities. For larger 
values, of z the solutions of the two Riemann 
problems will, of course, interact. 

Let us first consider the Riemann problem corre- 
sponding to the discontinuity at t = 0 (it might be 
helpful to refer to Fig. 2 at this point). Since for t < 2 
the state is known to consist of pure Li, only the 
region z < t < z + t, is of interest. Hence, we take 
C = CF in eqn. 13. The displacer obviously plays no 
role in the distribution process at t = 0, so that we 
may put y1 = 0 eqn. 13. Further, using eqn. 14, one 
of the remaining components, for which we choose 
y4, can be eliminated. Using eqn. 16, the following 
set of two conservation laws, involving only ,v~ and 
y3, remains: 

aYi a 
z + Fig) = 0 i=2,3 

where 5 = b2, yj)* and 

pi(;) = c”. a4i<3>Yi 

vN 1 + [=42(.3 - 11~2 + b43G) - lb, 
i = 2.3 (25) 
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From the general mathematical theory of hyper- 
bolic systems [26-281, it is known that the solution of 
a Riemann problem for a system of two components 
consists of three constant states, TV, v = 1,2,3, with 
;’ the left, p” the intermediate andy’3 the right state, 
separated by two shocks and/or simple waves. For 
the Riemann problem at r = 0, we have 3 1 = @, 
y$). Simple waves are continuous transitions which 
depend on (7, <) only through the ratio z/i. It turns 
out that for both the ideal Langmuir isotherm and 
the non-ideal isotherm, all transitions between con- 
stant states are shocks. If .rl < s* denote the shock 
speeds, then mass conservation leads to the follow- 
ing jump relationships across the shocks: 

s”(_$ - 4~;‘~) = F;.(_;“) - Fi(y’“) i = 2,3 

(26) 

These are four equations for the four unknowns sl, 
?, y; and y$. Numbers in superscripts are again used 
to indicate states. Thus, s1 refers to the shock 
between left and intermediate states, yz is the 
stationary phase concentration of the third com- 
ponent in the intermediate state, etc. For v = 2, we 
add eqns. 26 for i = 2, 3. After substitution of eqn. 
25 and of y’ 3 = (0,O) and by using jl: +y< = 1,one 
deduces that 

s2 = C”/vN (27) 

This value of the speed of the fastest shock is thus 
independent of the isotherm used. By substituting 
eqn. 27 into eqn. 26, s’ and vi, yg can be calculated. 
As can be expected, the intermediate state always 
consists of pure Na, so that y‘” = (0,l). The speed s1 
depends on the functional dependence of the trij on 
the concentrations ; and hence is different for 
different isotherms. 

Fig. 2 shows a schematic development graph in 
the (z, t) plane. The shocks r = i: and t = z + t, 
between regions of different total mobile phase 
concentration move at the velocity of the mobile 
phase (= 1 in our coordinates) and are seen to 
overtake the shocks with speed s1 [at point Q = (zo, 
to)] and with speed sz [at point R = (zR, ts)]. As a 
result, the shock speeds change suddenly to values S’ 
and s”’ which follow from the jump relations 26, but 
now with CF replaced by CE. In particular the fastest 
shock now has speed 

i2 = CE/vN (28) 
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Z- 

Fig. 2. Development graph of the ion-exchange separation of a 
binary mixture showing the three characteristic points P, Q and 
R. 

Next consider the Riemann problem at z = t,. 
There, Li is absent so that Y4 3 0. By eliminating Y3 
using Y3 = 1 - Y1 - Y2, one obtains a coupled 
system of two conservation laws involving only y, 
and Y2. Again, it can be shown that only shocks 
occur at the transitions between the constant states 
?“,v = 1,2,3.Onenowhas3r = (I,0)Tand33 = 
(0, $)‘while the intermediate state ;’ and the shock 
speeds s1 and s2 follow from the jump equations 

s”(jTv - ,-v+l, = p@“) - qjP+l) 

with 

i= 1,2, v = 1,2 (29) 

CE @+3i(3)Yi 

Fi(‘) = 5’ 1 + [Cr31(7) - lb1 + [c(32(3) - l]Y2 

i= 1,2 (30) 

In particular, if Yl + Y$ = 1, then eqn. 29 with v = 
1 implies that 

s1 = CE/vN (31) 

If yt + Y$ < 1, then by choosing v = 1 and adding 
over i = 1,2 the same result is obtained. Further, it 
is easy to verify that the intermediate state always 
consists of pure K so that 3” = (0, 1). Contrary to 
sl, the speed s2 of the fastest shock depends on the 
isotherm used. 

As can be seen from Fig. 2, the fastest shock 
corresponding to the Riemann problem at r = t, 
moves faster than the slowest shock emanating from 
r = 0. Hence, the latter is overtaken by the former. 
At the point of intersection lpoint P = (z+, fp) in Fig. 
21, we have yet another Riemann problem. In this 
problem the left state consists of pure K, whereas the 
right state consists of pure Na. Hence, only Y2 and Y3 
are relevant. After eliminating Y3 using y2 + Y3 = 
I, we obtain a single conservation law involving only 
y2. Hence, there is only one shock emanating from 
point P, separating the pure K and Na states. The 
shock speed, sl, follows from 

s’(& - Y:) = F2G1) - F2(Y2) (32) 

where 

F,(Y) = c”. a32(v’>y2 

vN 1 + b32(3) - lb2 
(33) 

By substituting yi = 1, yz = 0, one finds that 

s1 = C”/vN (34) 

Hence, we conclude (~5, Fig. 2) that for z > zp 
four pure states are found that are separated by 
shocks with equal speeds given by eqn. 34 and 
independent of the isotherms. Point P is thus the 
point of complete separation and for z > zp the 
isotachic state is attained. Although the isotachic 
state and the speeds of the shocks separating the 
pure states for z > zp are independent of the 
isotherm used, the position of point P does depend 
on the isotherms since P is the intersection of the 
fastest shock emanating from z = t, and the slowest 
shock emanating from r = 0. These shocks have 
speeds that do depend on the isotherm. 

Some remarks concerning the computation meth- 
od outlined above seem appropriate. In general, one 
does not know beforehand whether a transition 
between two constant states is a shock or a simple 
wave. Physically, that is determined by the different 
magnitudes of the stationary phase concentrations 
as fixed by the multi-component isotherm. Mathe- 
matically, the relative magnitudes of the eigenvalues 
of the Jacobian matrices A(;‘) and A(yvfl) deter- 
mine whether a given transition is a shock or a 
simple wave. As remarked above, all transitions for 
both the ideal and the non-ideal isotherms were 
found to be shocks. 
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It is well known that in the Langmuir case, i.e., the 
case that separation factors are constant, computa- 
tions are facilitated by using the so-called h- or 
o-transformation [15, 161. The new dependent vari- 
ables, wi, have the useful property that for a given 
Riemann problem involving an arbitrary number of 
components each of them changes across only one of 
the shocks or simple waves. Dependent variables 
with this property always exist for a Riemann 
problem involving only two dependent variables, 
and therefore we could have made use of them. 
However, for such small systems the jump relations 
26 are just as simple. But for Riemann problems 
involving more than two dependent variables, the 
existence of the Ois is very special and in fact one can 
show that for the non-ideal isotherms given by eqn. 
21 they do not exist [29]. 

EXPERIMENTAL 

Materials 

All alkali metal salts used were nitrates of Supra- 
pur or comparable quality (Merck, Darmstadt, 
Germany). The salts were dried overnight at 80°C 
and cooled to ambient temperature in a desiccator 
before weighing. High-purity deionized water (=z 18 
Mti) was used to make up the solutions. Quartz 
glassware was used throughout. 

All experiments were performed using a poly- 
styrenedivinylbenzene-based strong cation ex- 
changer (IC PAK C, Millipore-Waters, Milford, 
MA, USA), which was purchased prepacked in a 50 
mm x 4.6 mm I.D. column. The total ion-exchange 
capacity of the column and the column void fraction 
were determined to be 7.22 pequiv. and 0.42, 
respectively, using techniques described previously 

P21. 

Apparatus 
A modified PU4100 liquid chromatograph (Phi- 

lips Analytical Chromatography, Cambridge, UK) 
was used for separations by displacement chroma- 
tography. A schematic diagram of the displacement 
system is shown in Fig. 3. The valves indicated 
represent a Model 501 IP solvent selection switch 
(A), two Model 7030 three-port valves (B and C) and 
a Model 7125 six-port injection valve (D), all 
obtained from Rheodyne (Cotati, CA, USA). A 
needle valve (E) from Scientific Systems (State 

Reaenerant Carrier Displacer 

Solvent selection 

Three-port 
valve (B) 

Feed loading 
valve (D) 

Feed 

valve 0 

To waste 
Detector 

Fig. 3. Diagram of the experimental set-up used for displacement 
separations. Operational procedures are described in the text. 

College, PA, USA) was installed in the waste line. 
The pressure differential across the needle valve was 
adjusted to match the prevailing column pressure 
drop to allow for switching without influencing the 
flow-rate delivered by the pump. All tubing used was 
Tefzel (Omnifit, Cambridge, UK). A feed loop of 
2.58 ml was installed within the thermostated com- 
partment of the PU4100 column oven accessory. 
The column effluent was led to an LDC Conduc- 
tomonitor Mark III (LDC/Milton Roy, Riviera 
Beach, FL, USA). The conductivity signal was 
differentiated with respect to time using a differenti- 
ator built in-house and fed to a Philips PU6030 data 
capture unit. A Philips PU6000 integration system 
together with a P3202 computer were used for data 
processing. 

Optionally, fractions could be collected using a 
Model 201 fraction collector (Gilson, Villiers le Bel, 
France). Collected fractions were analysed using a 
PU4100 chromatograph equipped with a PU4700 
autoinjector. 

Procedure 
The set-up described in the previous section 

allows a five-position cyclic operation of the dis- 
placement system. In the following, the respective 
positions of the valves A. B. C and D are indicated in 
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parentheses (refer to Fig. 3). In the load position (2, 
R, R, R) the carrier solution is loaded on to the 
column. In the flush position (3, R, L, L) the carrier 
is flushed from the system and replaced by the 
displacer up to valve C. The total concentrations of 
carrier, feed and displacer typically range from 0.5 to 
2.5 mM. In the feed position (3, L, R, R) the feed 
loop is filled using a large syringe with the feed 
solution by flushing with at least five feed-loop 
volumes. It should be noted that displacer solution is 
led to waste via the needle valve in the feed position. 
The run position (3, R, R, L) refers to the actual 
displacement separation. Flow-rates between 0.5 
and 1.5 ml/min were used. After each displacement 
run, the column was regenerated (1, R, R, R) by 
flushing with a 0.1 M LiN03 solution for at least 30 
min. The dead volume in the tubing was determined 
by replacing the column with a zero-dead-volume 
coupling. 

Numerical calculations 
A computer program was written to compute 

development graphs. The program decides whether 
a boundary is diffuse or self-sharpening. If only 
shocks are encountered, as in this study, all bound- 
ary trajectories can be calculated from jump rela- 
tionships such as eqn. 26. Development graphs are 
then constructed for a number of preselected con- 
centration ratios of the binary feed. The lengths of 
pure and mixed zones at the column exit are 
produced in a dimensional format to facilitate 
comparison with experimental results. 

The input required by the program consists of 
operating parameters (column void fraction, col- 
umn capacity, flow-rate, feed-loop volume, total 
concentrations in carrier, feed and displacer) and 
isotherm information. The multi-component iso- 
therm used in this paper (eqn. 21) requires the 
specification of structural parameters, the com- 
pensation temperature of the class and the experi- 
mental temperature. The experimental temperature 
was specified as appropriate. The structural param- 
eters for the class of alkali metal ions and the 
pertinent compensation temperature are listed in 
Table I. 

TABLE I 

VALUES FOR THE STRUCTURAL PARAMETERS fij OF 
THE COMPENSATION CLASS OF THE ALKALI METAL 
IONS (r’ = 480 K) 

Rb K Na Li 

Rb 0.0 
K 1.18 1.70 
Na 2.75 3.49 6.33 
Li 3.36 4.91 9.95 12.11 

RESULTS AND DISCUSSION 

In this section we compare experimental results 
with those computed using the techniques outlined 
in the Theory section. As these techniques are 
general and not restricted to ideal (Langmuir) 
isotherms, it is our aim to examine critically predic- 
tions obtained using different descriptions of the 
multi-component distribution equilibrium. In the 
experiments we confine ourselves to the displace- 
ment separation of binary mixtures of sodium and 
potassium. In all experiments Li was used as the 
carrier and Rb as the displacer. 

The results of calculations are presented in the 
form of development graphs (see Fig. 4), i.e., plots of 
dimensionless time (Ut/Z) vs. dimensionless position 
(z/z). All the information required to compute a 
chromatogram at any time or place is contained in 
such a graph. Different characteristic points [e.g., 
the point of complete separation (P)] can be read 
directly from the graph. Compositions pertaining to 
different positions in the graph can be calculated 
from the known location of shocks and simple 
waves. As can be’seen from Fig. 4, and already noted 
in the Theory section, only shocks occur in our 
examples. All displacer concentrations will lead to 
the desired result of an isotachic train, so that 
separation always takes place. The displacer concen- 
tration can be used as the instrument to control the 
concentrations at which the pure feed components 
are eluted. In Fig. 4a, the concentration of the 
displacer is lower than that of the feed, in Fig. 4b the 
concentration of the displacer is equal to and in Fig. 
4c higher than that of the feed. According to eqn. 23, 
three regions of different total concentration can be 



18 P. K. DE BOKX. P. C. BAARSLAG, H. P. URBACH 

t 6o.o n 
i 50.0 

t /I/ 

g 30.0/ .i //// 

20.0 

w 

// 
;/ 

10.0 / 
(4 

___-_--- 

0.0 -_ -- 

0.0 0.5 1.0 1.5 2.0 2.5 

50.0 

40.0 

30.0 

20.0 

0.0 0.5 1.0 1.5 2.0 2.5 

60.0 

50.0 

40.0 

30.0 

20.0 

10.0 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 

(position along column) /L ---+ 

Fig. 4. Development graphs of the displacement separation of a binary mixture consisting of I .O mMKN03 and 1.0 mMNaN0,. The 
carrier is LiNOs (2.0 mM) and the displacer is RbNOs at concentrations of (a) 1 .O, (b) 2.0 and (c) 3.0 mM. The column has a void volume 
of 0.349 ml and an ion-exchange capacity of 7.22 nequiv. The feed volume is 2.58 ml and the temperature 295 K. L is the column length 
and u is the linear velocity of the eluent. 

distinguished. As all chromatographic velocities are 
smaller than U, the concentration of the displacer 
determines the concentrations in the separated 
zones. Pure zones become narrower and hence more 
concentrated at higher displacer concentrations, 
showing the capability of displacement chromato- 
graphy to enrich sample components during separa- _ _ 
tion. 

In Fig. 5 the experimental results are illustrated, 
the first derivative of the conductivity signal being 
plotted against time. Compared with Fig. 4, dis- 
placement chromatograms refer to a position corre- 
sponding to the column outlet (z = 1). Our data 
correspond to the situation of incomplete separa- 
tion, that is, the feed loaded is so large that the 
column length is insufficient for the attainment of 

4 

k 

5 
6 

50 

0 2 4 6 8 10 --0 2 4 6 8 10 

minutes - minutes - 

Fig. 5. Displacement chromatograms for two different K-Na mixtures on a Waters IC PAK C column (differentiated conductivity 
traces). The carrier was LiNOs (2.0 mM) and the displacer was RbNOs (2.0 mM). The feed was 2.58 ml of a solution containing 1 .O mM 
K-l .O mM Na (right-hand side) and 0.6 mMK-I .4 mMNa (left-hand side). The flow-rate and the temperature were 1 .O ml/min and 295 
K, respectively. The column had a void volume of 0.349 ml and an ion-exchange capacity of 7.22 pequiv. 
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Fig. 6. Development graphs illustrating the shift of the point of 
complete separation with temperature [(a) 295 K, (b) 308 K; (c) 
317 K] of a 1 .O mM K-l .O mM Na mixture. The displacer is 2.0 
mM RbNOs. Other conditions as in Fig. 4. 

the isotachic state. In terms of Fig. 4, the column 
outlet is to the left of the point of complete 
separation (P). On the left-hand side of Fig. 5, a 
displacement chromatogram of a 1.0 mM K-1.0 
mM Na mixture is shown, and on the right-hand 
side, a chromatogram of a 0.6 mM K-l.4 mM Na 
mixture. The peaks numbered 3,4 and 5 refer to the 
shocks from the carrier state to the pure Na state (3), 
the pure Na state to the mixed feed state (4) and from 
the mixed feed state to the pure K state. Peak 6 refers 
to the shock from pure K to the displacer Rb (5). 
Peaks 1 and 2 correspond to small changes in the 
total concentration that are experimentally inevi- 
table. According to eqn. 10, they travel at the 
velocity of the eluent U and hence emerge at to and 
to + t,. The distances between the peaks, called zone 
lengths and measured in millilitres of effluent, 
correspond to the amounts in the different states. In 
the following, these experimental zone lengths will 
be compared with predictions using different multi- 
component distribution functions. It should be 
realized that when complete separation is attained, 
i.e., to the right of point P in Fig. 4, zone lengths are 
no longer a critical test of the distribution function 
used to model the separation. 

Let us first investigate the influence of tempera- 

TABLE II 

COMPARISON OF CALCULATED ZONE LENGTHS 
(USING THE ISOTHERM OF EQN. 21 WITH EXPERI- 
MENTALLY DETERMINED VALUES 

T 09 Na zone Mixed zone 
length ,I) length (ml) 

K zone 
length (ml) 

295 (exp.) 0.64 1.25 0.65 
295 (talc.) 0.64 1.30 0.64 
308 (exp.) 0.60 1.40 0.57 
308 (talc.) 0.57 1.44 0.57 
317 (exp.) 0.56 1.46 0.54 
3 17 (talc.) 0.53 1.52 0.53 

ture. In Fig. 6, the development graphs for the 
separation of an Na-K mixture are given for three 
different temperatures. It is seen that separation 
becomes more difficult as temperature is increased, 
i.e., the point of separation moves to longer column 
lengths. Numerical results are presented in Table II. 
A good comparison between the experimental re- 
sults and those calculated using the multi-compo- 
nent isotherm of eqn. 21 is observed. The result is 
understandable. As the alkali metal ions belong to 
the same compensation class, they have, by detini- 
tion, a common compensation temperature (in this 
case 480 K). At this temperature the stationary 
phase composition is equal to the mobile phase 
composition for all mobile phase compositions, so 
that all selectivity is lost. Hence, on going from low 
temperatures towards the compensation tempera- 
ture, selectivity factors become progressively small- 
er, making the column length and time required for a 
complete separation longer. 

We now compare the performance of the multi- 
component Langmuir isotherm with the isotherm of 
eqn. 21. Langmuir data used for the K-Na exchange 
were obtained by fitting frontal chromatography 
measurements published previously [23] to the 
Langmuir equation. The values used for N and CC 
were 7.22 pm01 and 0.66, respectively. In Fig. 7, the 
development graphs for the cases of the Langmuir 
isotherm and the isotherm of eqn. 21 are depicted on 
the left- and right-hand side, respectively. The open 
squares refer to the points of complete separation 
(P). In each plot, there are eleven such points 
referring to eleven equidistant K/Na ratios in the 
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Fig. 7. Development graphs for eleven different K-Na mixtures computed using a multi-component Langmuir isotherm (left-hand side) 
and the isotherm ofeqn. 21 (right-hand side). The points ofcomplete separation correspond to eleven equidistant K/Na ratios in the feed 
ranging from 0.0 to 1 .O. The total feed concentration is 2.0 mM, as is the concentration of RbNOJ displacer. Other conditions as in Fig. 4. 

feed ranging from 0.0 to I .O. The difference between lengths required for complete separation ea. 50% 
the two is apparent. In the Langmuir case, the point higher are predicted in the latter instance for high 
of complete separation is only a weak function of the potassium contents in the feed. In F&. 8 the 
feed composition, whereas a much stronger depen- experimental results are compared with the predic- 
dence on the K/Na ratio is observed for the multi- tions of both models. The lengths of the different 
component isotherm in which interactions in the zones (in millilitres) are plotted as a function of the 
stationary phase are taken into account. Column composition of the binary feed. The left-hand side 

0 0.5 1.0 0 0.5 1.0 

xK - xK - 

Fig. 8. Lengths ofzones in the displacement separation of K-Na mixtures as a function of the potassium content ofthe feed. Curves in the 
left-hand figure are computed using a multi-component Langmuir isotherm and in the right-hand figure using the isotherm of eqn. 21. 
The symbols represent experimental data. Three different zone lengths can be distinguished: (0) the pure Na zone, ( W) the mixed zone 
and (a) the pure K zone. Total concentrations in carrier. feed and displacer were all 2.0 mM. Other conditions as in Fig. 5. 
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shows the lengths calculated using the Langmuir 
model, the right-hand side those calculated using the 
isotherm of eqn. 21. Small open circles on both the 
Na and K axes represent the limiting lengths of the 
mixed zone at very small and very high potassium 
contents, respectively, We feel that the results are 
convincing: the multi-component distribution iso- 
therm of eqn. 21 shows good agreement with the 
experimental data over the complete composition 
range, whereas the Langmuir isotherm predicts 
experimental results correctly over only a limited 
composition range. The particular range of fit for 
the Langmuir isotherm strongly depends on the way 
Langmuir parameters are extracted from the ex- 
perimental data, e.g., a-values obtained from a fit to 
the complete isotherm are significantly different 
from those derived from linear elution chromato- 
graphic data. A good prediction over the complete 
feed composition range is not possible, which re- 
flects the insufficiency of the multi-component 
Langmuir equation to represent the competitive 
sorption behaviour. 

From Figs. 7 and 8, it is seen that the errors made 
by using too simple an expression for the distribu- 
tion isotherm are substantial. Research aimed at 
obtaining improved descriptions of competitive 
sorption is sparse, however 1301. As remarked in the 
Introduction, understanding the sorption process is 
the key to understanding chromatographic separa- 
tions. We firmly believe that better descriptions of 
the distribution equilibrium, such as the isotherm of 
eqn. 21, are a prerequisite for the quantitative 
modelling of non-linear separations. Attempts to 
fine-tune the continuity equations by adding dis- 
persive terms seem dubious as long as inadequate 
descriptions of the distribution equilibrium are used. 

CONCLUSIONS 

The traditional way of solving the coupled set of 
mass-balance equations that apply to the transport 
problem in displacement chromatography (i.e., 
using the h- or o-transformation) cannot be used if 
the multi-component isotherm describing the dis- 
tribution between mobile and stationary phases is 
non-ideal. 

For the separation of binary mixtures, the mass- 
balance equations can be solved for non-ideal 
isotherms using shock-wave theory, provided that 

21 

the continuity equations are recast in terms of 
stationary phase concentrations and that the total 
concentration in the stationary phase is known at 
every time and place. 

Experimental results for the ion-exchange separa- 
tion (total concentration in the stationary phase 
constant) of binary mixtures are only properly 
described across the complete comp.osition range if 
non-idealities are taken into account. In extreme 
cases, ideal sorption behaviour predicts the column 
length required for complete separation to be ca. 
50% too short. 

For the quantitative modelling of displacement 
chromatography, multi-component distribution iso- 
therms better than the ideal approximation are a 
prerequisite. 
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